ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

Digiial System Design

DIGITAL SYSTEM MODEL

FSM (CONTROL) + DATAPATH CIRCUIT

DATAPATH CIRCUIT

D>

1
1
1
1
1
1
1
1
1
1
1
1
1
1
Inputs q:
1
1
1
1
1
1
1
1

FINITESTATE mm——) Outputs
resetn MACHINE i
1
clock > '
1
CONTROL CIRCUIT :
EXAMPLES

CAR LOT COUNTER

repcre“);g < If A = 1 — No light received (car obstructing LED A)
P If B =1 — No light received (car obstructing LED B)

If car enters the lot, the following sequence (A|B) must be followed:

/
D_ >t | s 00 - 10 — 11 — 01 — 00
If car leaves the lot, the following sequence (A|B) must be followed:
J/ 00-»01->11->10—-00

P— > A

N\ A car might stay in a state for many cycles since the car speed is very large
compared to that of the clock frequency.

DIGITAL SYSTEM (FSM + Datapath circuit)
= Usually, when resetn (asynchronous clear) and clock are not drawn, they are implied.

resetn : |
| ; .
| | I
A : > E : N 0 I 10{
B : »| FINITE STATE ud —>lud I '
| MACHINE | P
1 I I |
|
clock : CONTROL CIRCUIT ‘ | 10-bit counter |
1
1
1

1 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

» Finite State Machine (FSM):

A|B/E|ud

00/00 10/00 11/00 01/00 10/00

resetn =0

01,10,11/00 °

3

oo/oo 10/00 11/00 01/00
\\\-"l 01/00 00/11
00/00
00/00
00/00 01/00

01/00 11/00 10/00

\\10/00 10/00
\/
01/00 e
S6 S7
01/00 11/00

00/10

= Algorithmic State Machine (ASM) chart:

resetn=0
S1)L

no
‘AB=00

yes

S2

11 : : 00

AB

2 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design

Winter 2017

7-SEGMENT SERIALIZER

DIGITAL SYSTEM (FSM + Datapath circuit)

= Most FPGA Development boards have a number of 7-segment displays (e.g., 4, 8). However, only one can be used at a time.
= If we want to display four digits (inputs A, B, C, D), we can design a serializer that will only show one digit at a time on the

7-segment displays.

= Since only one 7-segment display can be used at a time, we need to serialize the four BCD outputs. In order for each digit
to appear bright and continuously illuminated, each digit is illuminated for 1 ms every 4 ms (i.e. a digit is un-illuminated for
3 ms and illuminated for 1 ms). This is taken care of by feeding the output z of the ‘counter to 0.001s’ to the enable input
of the FSM. This way, state transitions only occur each 0.001 s.

= Nexys-4/Nexys-4 DDR Board: For each display, we control the individual cathodes (7) of each LED: these active-low signals.
The anode is common: his is the enable signal (active-low). The board has eight 7-segment displays; we are only using four

resetn

displays in this circuit: thus, we need to control 4 enable signals and disable the remaining 4 (buf (7..4) = 0).
4
A + 0
4 BCD/HEX
+ 1
B 74.4) to7 L7
4 segments [~
C—= 2 decoder D y C v B v A
4
D | 3]]]]
t Ll
//
2 [] — [] []
- LRl
Counter z [[] [[
(0.001s) A A A A
5| 2-to-4 | buf buf(3) buf(2) buf(1) buf(0)
"1 decoder
6 s
E

FINITE STATE MACHINE

= Algorithmic State Machine (ASM) chart: This is a Moore-type FSM. The output s only depends on the present state.
Note that this is actually a counter from 0 to 3 with enable.

S1

lresetn:O

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer Hardware Design

Winter 2017

BI1T-COUNTING CIRCUIT

SEQUENTIAL ALGORITHM

C« 0
while A # 0
if ap = 1 then
C«< C+1
end if

right shift A
end while

DIGITAL SYSTEM (FSM + Datapath circuit)

= Counter Design: EC=1 increases the count. sc1r: Synchronous clear. The way this is designed, if sclr = *1’, the count is

initialized to zero (here, we do not need EC to be 1).

Data
resetn
L~
“an
LT
0—>[din
s_1—> s 1 A
E sr—>|E
> EC
E m/ 3
Parallel Access /; sclr C © c
Right Shift (MSB to LSB) =—>|sclr
s 1 =1 — Load \ 2 ~
s 1 =0 —> Shift .
- counter: m bits
m = ceil (log2(n))
z a,
(@)
s N done
FINITE STATE MACHINE —>

>

= Algorithmic State Machine (ASM) chart: Mealy FSM

resetn=0
S1 l

scr C« 1
E_sr,s |« 1

+ 1

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer Hardware Design

Winter 2017

DEBOUNCING CIRCUIT

Mechanical bouncing lasts approximately 20 ms. The, we have to make sure that the input signal w is stable (‘1) for at least

20 ms before we assert w_db. Then, to deassert w_db, we have to make that the w is stable (*0") for at least 20 ms.

DIGITAL SYSTEM (FSM + Datapath circuit)

L}
20ms

If T is the period of the clock signal, then N = o

Counter 0 to N-1: E=1 — Q = Q+1. sclr: Synchronous clear. The way it is designed, if sclr = ‘1" and E="1’, then Q=0.

For example, for 100 MHz input clock, T = 10 ns. Then N = 21%’:; =2x10°
resetn (5
db
20 ms 20 ms W > W_
b Lo el
MW | mMIW : clock E sclr z
w 1 1 : : 1 1
w_do —————] SR Q- n, n,
“—> . > . E Q 7 7>
<20 ms <20 ms sclr
P comparator z
counter _ >
OtoN-1 Q=N-12

Algorithmic State Machine:

sclr < 1

waits for the
first '1'

for w_db=1,
w must be 1 for
at least 20 ms

waits for the
first 'O’

for w_db=0,
w must be 0 for
at least 20 ms

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

SIMPLE PROCESSOR

DIGITAL SYSTEM (FSM + Datapath circuit)

= This system is a basic Central Processing Unit (CPU). For completeness, a memory would need to be included.

= Here, the Control Circuit could be implemented as a State Machine. However, in order to simplify the State Machine design,
the Control Circuit is partitioned into a datapath circuit and a FSM.

Data_inan)D 0 9/

Data
>
——————
BUS
| N R 2 R B D B 1
. RO © R1 ° R2 ® R3 A B
> > > > >
v 3
> —> —> — V
o o — — ~ ~ . o = ALU
A [™ x| % | <
Lo Ao Ao o) a o
[0
oG
>
i)
X
[0)
o
—>
Ylo |o
m o
W
done
Fun mk CONTROL CIRCUIT | 7S
>
OPERATION

= Every time w ='1', we grab the instruction from fun and execute it.

» Instruction = |f,|filfo|Ry1|RYo|Rx1|Rx,|. This is called ‘machine language instruction’ or Assembly instruction:
v fofifo: Opcode (operation code). This is the portion that specifies the operation to be performed.
v" Rx: Register where the result of the operation is stored (we also read data from Rx). Rx can be R1, R2, R3, R4.
v" Ry: Register where we only read data from. Ry can be R1, R2, R3, R4.

f = £,£:£ Operation Function
000 Load Rx, Data Rx <« Data
001 Move Rx, Ry Rx <« Ry
010 Add Rx, Ry Rx <« Rx + Ry
011 Sub Rx, Ry Rx <« Rx - Ry
100 Not Rx Rx <« NOT (Rx)
101 And Rx, Ry Rx <« Rx AND Ry
110 Or Rx, Ry Rx <« Rx OR Ry
111 Xor Rx, Ry Rx <« Rx XOR Ry

6 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer Hardware Design Winter 2017

= Control Circuit:
This is made out of some combinational units, a register, and a FSM:
v Ex: Every time we want to enable register Rx, the FSM only asserts Ex (instead of controlling E R0, E R1, E R2, E R3
directly). The decoder takes care of generating the enable signal for the corresponding register Rx.
v Eo, so: Every time we want to read from register Ry (or Rx), the FSM only asserts Eo (instead of controlling © RO,
0 _R1,0_R2,0_R3directly) and so (which signals whether to read from Rx or Ry). The decoder takes care of generating
the enable signal for the corresponding register Rx or Ry.

7 7 Rx; —>»{0 0fF—>
E RO
fun ﬁL) D 0 ﬂL> funq DECODER 1 {——> rRr1
E fun ___ 5|g Rxo—3f1 with 2—>E R2
> enable B
Ex . 3——>E R3
Ry Sy X R
2 1 DECODER ° > 0RO
2 1 O R1
Rx =7 >1 with 5l 5 oRro
enable B
T Fo 3—>0 R3
> E

fung = £, £, 1£,IRy; IRy IRx; [RX, |

A& op

I Ex Eo so

—>»E fun
—>

—>E_A
> E G
> 0_G
——»E ext

W
3 done
£ ld FSM L >
>
= Arithmetic-Logic Unit (ALU):
op Operation Function Unit
0000 y <= A Transfer ‘A’
0001 y <= A + 1 Increment ‘A’
0010 y <= A -1 Decrement ‘A’
0011 y <= B Transfer ‘B’ . .
0100 y <= B + 1 Increment ‘B’ Arithmetic
0101 y <= B -1 Decrement ‘B’
0110 y <= A + B Add ‘A’ and ‘B’
0111 y <= A - B Subtract ‘B’ from 'A'
1000 y <= not A Complement ‘A’
1001 y <= not B Complement ‘B’
1010 y <= A AND B AND
1011 y <= A OR B OR Logi
1100 y <= A NAND B NAND 0gic
1101 y <= A NOR B NOR
1110 y <= A XOR B XOR
1111 y <= A XNOR B XNOR

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design

Winter 2017

= Algorithmic State Machine (ASM):
Every branch of the FSM implements an Assembly instruction.

resetn=0
S1)L

E_fun« 1

E_ext, Ex « 1 111
done« 1
110
001
)
Eo,Ex« 1
done « 1 100 101
N
Eo,so0« 1 Eo,so0« 1 Eo,s0« 1 Eo,s0« 1 Eo,so0« 1 Eo,s0« 1
E_A<1 E_A<1 E_A<1 E_A<1 E_A<1 E_A<1
J
S3a Sda S5a S6a S7a S8a
E0,E G« 1 E0,E G« 1 EGe«1 E0,E G« 1 E0,E G« 1 E0,E G« 1
op « 0110 op « 0111 op « 1000 op « 1010 op « 1011 op « 1110
S3b S4b S5b S6b S7b S8b
O_G Ex« 1 O_G,Ex«1 O_G,Ex« 1 O_G,Ex« 1 O_G, Ex«1 O_G, Ex« 1
done « 1 done« 1 done« 1 done« 1 done« 1 done« 1

8 Instructor: Daniel Llamocca

