
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

1 Instructor: Daniel Llamocca

Digital System Design

DIGITAL SYSTEM MODEL

FSM (CONTROL) + DATAPATH CIRCUIT

EXAMPLES

CAR LOT COUNTER

If A = 1  No light received (car obstructing LED A)

If B = 1  No light received (car obstructing LED B)

If car enters the lot, the following sequence (A|B) must be followed:
 00  10  11  01  00

If car leaves the lot, the following sequence (A|B) must be followed:
 00  01  11  10  00

A car might stay in a state for many cycles since the car speed is very large
compared to that of the clock frequency.

DIGITAL SYSTEM (FSM + Datapath circuit)
 Usually, when 𝑟𝑒𝑠𝑒𝑡𝑛 (asynchronous clear) and 𝑐𝑙𝑜𝑐𝑘 are not drawn, they are implied.

FINITE STATE
MACHINEresetn

clock

Inputs

Outputs

CONTROL CIRCUIT

DATAPATH CIRCUIT

B

A

photo
receptors

FINITE STATE
MACHINE

resetn

clock

A

B

CONTROL CIRCUIT

Q
10

10-bit counter

E

ud

E

ud

DATAPATH CIRCUIT

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

2 Instructor: Daniel Llamocca

 Finite State Machine (FSM):

 Algorithmic State Machine (ASM) chart:

S1

S2

resetn=0

yes

no

00

AB=00

AB
11

S3

10

10
AB

00

S4

11
AB

10

01 11

00

S4

01
AB

00

01

E, ud  1

11
10

S6

01
AB

00

S7

11
AB

01

1011

00

S8

10
AB

00

10

E  1

11
01

01

S1 S2

00/00
resetn = 0

A|B/E|ud

01,10,11/00 S3 S4

10/00 11/00

S5

01/00

00/11

00/00

S6

01/00

11/00

10/00 11/00 01/00

01/00

00/00 10/00 11/00

10/00

00/00

S7 S8

11/00 10/00

01/00 11/00

10/0010/00

00/00

00/10

01/00 11/00

00/00 01/00

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

3 Instructor: Daniel Llamocca

7-SEGMENT SERIALIZER

DIGITAL SYSTEM (FSM + Datapath circuit)
 Most FPGA Development boards have a number of 7-segment displays (e.g., 4, 8). However, only one can be used at a time.
 If we want to display four digits (inputs A, B, C, D), we can design a serializer that will only show one digit at a time on the

7-segment displays.
 Since only one 7-segment display can be used at a time, we need to serialize the four BCD outputs. In order for each digit

to appear bright and continuously illuminated, each digit is illuminated for 1 ms every 4 ms (i.e. a digit is un-illuminated for
3 ms and illuminated for 1 ms). This is taken care of by feeding the output 𝑧 of the ‘counter to 0.001s’ to the enable input

of the FSM. This way, state transitions only occur each 0.001 s.
 Nexys-4/Nexys-4 DDR Board: For each display, we control the individual cathodes (7) of each LED: these active-low signals.

The anode is common: his is the enable signal (active-low). The board has eight 7-segment displays; we are only using four

displays in this circuit: thus, we need to control 4 enable signals and disable the remaining 4 (buf(7..4) = 0).

 Algorithmic State Machine (ASM) chart: This is a Moore-type FSM. The output 𝑠 only depends on the present state.

Note that this is actually a counter from 0 to 3 with enable.

1

S1
resetn=0

s  00

s  01

S2

s  10

S3

s  11

S4

E

E

E

E

1

1

1

0

0

0

0

4

4

4

4

0

1

2

3

2

BCD/HEX
to 7

segments
decoder

2-to-4
decoder

4

A

B

C

D

s

7

4buf buf(3) buf(2) buf(1) buf(0)

FINITE STATE MACHINE

resetn

Counter

(0.001s)

z

E

ABCD

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

4 Instructor: Daniel Llamocca

BIT-COUNTING CIRCUIT

SEQUENTIAL ALGORITHM

DIGITAL SYSTEM (FSM + Datapath circuit)
 Counter Design: EC=1 increases the count. sclr: Synchronous clear. The way this is designed, if sclr = ‘1’, the count is

initialized to zero (here, we do not need EC to be 1).

 Algorithmic State Machine (ASM) chart: Mealy FSM

C  0

while A  0

if a0 = 1 then

C  C + 1

end if

right shift A

end while

A

din

s_l

E

0

s_l

E_sr

Parallel Access
Right Shift (MSB to LSB)

s_l = 1  Load

s_l = 0  Shift

Data

n

n

z a0

Q m

counter: m bits

m = ceil(log2(n)) + 1

E

sclr

EC

sclr_C

FINITE STATE MACHINE
s

resetn

C

done

S1

S2

resetn=0

1

0
s

z

sclr_C  1

E_sr, s_l  1

01

EC  1

1

0

E_sr  1

a0

S3

done  1

1
s

0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

5 Instructor: Daniel Llamocca

DEBOUNCING CIRCUIT
 Mechanical bouncing lasts approximately 20 ms. The, we have to make sure that the input signal 𝑤 is stable (‘1’) for at least

20 ms before we assert 𝑤_𝑑𝑏. Then, to deassert 𝑤_𝑑𝑏, we have to make that the 𝑤 is stable (‘0’) for at least 20 ms.

DIGITAL SYSTEM (FSM + Datapath circuit)
 Counter 0 to N-1: E=1  Q = Q+1. sclr: Synchronous clear. The way it is designed, if sclr = ‘1’ and E=’1’, then Q=0.

If T is the period of the clock signal, then 𝑁 =
20𝑚𝑠

𝑇
.

For example, for 100 MHz input clock, T = 10 ns. Then 𝑁 =
20𝑚𝑠

10𝑛𝑠
= 2 × 106

 Algorithmic State Machine:

resetn

Q

clock

n

counter
0 to N-1

z

Q=N-1?

comparator

E
n

FSM

w w_db

sclr

E sclr z

w_db

w

20 ms20 ms

<20 ms <20 ms

S0
resetn=0

E, sclr  1

S1

E  1

S2

w

0

1

1

0
w

1

0
w

z
0

w_db  1

S3

0

1
w

1

w_db, E  1

S4

0

1
w

z
0

1

sclr  1

waits for the
first '1'

for w_db=1,
w must be 1 for
at least 20 ms

waits for the
first '0'

for w_db=0,
w must be 0 for
at least 20 ms

sclr  1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

6 Instructor: Daniel Llamocca

SIMPLE PROCESSOR

DIGITAL SYSTEM (FSM + Datapath circuit)
 This system is a basic Central Processing Unit (CPU). For completeness, a memory would need to be included.
 Here, the Control Circuit could be implemented as a State Machine. However, in order to simplify the State Machine design,

the Control Circuit is partitioned into a datapath circuit and a FSM.

OPERATION
 Every time w = '1', we grab the instruction from 𝑓𝑢𝑛 and execute it.
 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = |𝑓2|𝑓1|𝑓0|𝑅𝑦1|𝑅𝑦0|𝑅𝑥1|𝑅𝑥0|. This is called ‘machine language instruction’ or Assembly instruction:

 𝑓2𝑓1𝑓0: Opcode (operation code). This is the portion that specifies the operation to be performed.

 𝑅𝑥: Register where the result of the operation is stored (we also read data from 𝑅𝑥). 𝑅𝑥 can be R1, R2, R3, R4.
 𝑅𝑦: Register where we only read data from. 𝑅𝑦 can be R1, R2, R3, R4.

f = f2f1f0 Operation Function

000 Load Rx, Data Rx  Data

001 Move Rx, Ry Rx  Ry

010 Add Rx, Ry Rx  Rx + Ry

011 Sub Rx, Ry Rx  Rx - Ry

100 Not Rx Rx  NOT (Rx)

101 And Rx, Ry Rx  Rx AND Ry

110 Or Rx, Ry Rx  Rx OR Ry

111 Xor Rx, Ry Rx  Rx XOR Ry

R0
E

O
_
R
0

E
_
R
0

R1
E

O
_
R
1

E
_
R
1

R2
E

O
_
R
2

E
_
R
2

R3
E

O
_
R
3

E
_
R
3

A
E

O
_
G

E
_
A

G
E

ALU

E
_
e
x
t

CONTROL CIRCUIT

Data

o
p

4

w

fun
7

done

BUS

B

E
_
G

QD
n

Data_in
n

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

7 Instructor: Daniel Llamocca

 Control Circuit:
This is made out of some combinational units, a register, and a FSM:

 Ex: Every time we want to enable register 𝑅𝑥, the FSM only asserts Ex (instead of controlling E_R0, E_R1, E_R2, E_R3

directly). The decoder takes care of generating the enable signal for the corresponding register 𝑅𝑥.

 Eo, so: Every time we want to read from register 𝑅𝑦 (or 𝑅𝑥), the FSM only asserts Eo (instead of controlling O_R0,

O_R1, O_R2, O_R3 directly) and so (which signals whether to read from 𝑅𝑥 or 𝑅𝑦). The decoder takes care of generating

the enable signal for the corresponding register 𝑅𝑥 or 𝑅𝑦.

 Arithmetic-Logic Unit (ALU):

op Operation Function Unit

0000

0001

0010

0011

0100

0101

0110

0111

y <= A

y <= A + 1

y <= A - 1

y <= B

y <= B + 1

y <= B – 1

y <= A + B

y <= A – B

Transfer ‘A’

Increment ‘A’

Decrement ‘A’

Transfer ‘B’

Increment ‘B’

Decrement ‘B’

Add ‘A’ and ‘B’

Subtract ‘B’ from 'A'

Arithmetic

1000

1001

1010

1011

1100

1101

1110

1111

y <= not A

y <= not B

y <= A AND B

y <= A OR B

y <= A NAND B

y <= A NOR B

y <= A XOR B

y <= A XNOR B

Complement ‘A’

Complement ‘B’

AND

OR

NAND

NOR

XOR

XNOR

Logic

Rx1

Rx0

Ex

DECODER

with
enable

0

1

2

3

0

1

E

E_R0

E_R1

E_R2

E_R3

Ry

Eo

DECODER
with

enable

0

1

2

3

0

1

E

O_R0

O_R1

O_R2

O_R3

Rx

so

0

1

2

2
2

FSM
done

w

f
3

Ex Eo so E
_
G

O
_
G

E
_
e
x
t

o
p

4

E_fun

QD

E

7
fun

7
funq

funq = |f2|f1|f0|Ry1|Ry0|Rx1|Rx0|

E
_
A

E
_
f
u
n

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

8 Instructor: Daniel Llamocca

 Algorithmic State Machine (ASM):
Every branch of the FSM implements an Assembly instruction.

 S1

S2

resetn=0

1

0

E_ext, Ex  1

done  1

Eo, Ex  1

done  1

000

001

Eo, so  1

E_A  1

Eo, E_G  1

op  0110

O_G, Ex  1

done  1

010

S3a

S3b

Eo, E_G  1

op  0111

O_G, Ex  1

done  1

S4a

S4b

Eo, so  1

E_A  1

E_G  1

op  1000

O_G, Ex  1

done  1

S5a

S5b

Eo, so  1

E_A  1

Eo, E_G  1

op  1010

O_G, Ex  1

done  1

S6a

S6b

Eo, so  1

E_A  1

Eo, E_G  1

op  1011

O_G, Ex  1

done  1

S7a

S7b

Eo, so  1

E_A  1

Eo, E_G  1

op  1110

O_G, Ex  1

done  1

S8a

S8b

Eo, so  1

E_A  1

w

f

E_fun  1

011 100 101

110

111

