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Digital System Design 
 

DIGITAL SYSTEM MODEL 
 

FSM (CONTROL) + DATAPATH CIRCUIT 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXAMPLES 

 

CAR LOT COUNTER 
  
If A = 1  No light received (car obstructing LED A) 

If B = 1  No light received (car obstructing LED B) 

 
If car enters the lot, the following sequence (A|B) must be followed: 
 00  10  11  01  00 

If car leaves the lot, the following sequence (A|B) must be followed: 
 00  01  11  10  00 

 
A car might stay in a state for many cycles since the car speed is very large 
compared to that of the clock frequency. 

 
 
 
DIGITAL SYSTEM (FSM +  Datapath circuit) 
 Usually, when 𝑟𝑒𝑠𝑒𝑡𝑛 (asynchronous clear) and 𝑐𝑙𝑜𝑐𝑘 are not drawn, they are implied. 

  

FINITE STATE 
MACHINEresetn

clock

Inputs

Outputs

CONTROL CIRCUIT

DATAPATH CIRCUIT

B

A

photo
receptors

FINITE STATE 
MACHINE

resetn

clock

A

B

CONTROL CIRCUIT

Q
10

10-bit counter

E

ud

E

ud

DATAPATH CIRCUIT



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-378: Computer Hardware Design  Winter 2017 

 

 

2 Instructor: Daniel Llamocca 

 Finite State Machine (FSM): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 Algorithmic State Machine (ASM) chart:  
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7-SEGMENT SERIALIZER 
 
DIGITAL SYSTEM (FSM + Datapath circuit) 
 Most FPGA Development boards have a number of 7-segment displays (e.g., 4, 8). However, only one can be used at a time.  
 If we want to display four digits (inputs A, B, C, D), we can design a serializer that will only show one digit at a time on the 

7-segment displays. 
 Since only one 7-segment display can be used at a time, we need to serialize the four BCD outputs. In order for each digit 

to appear bright and continuously illuminated, each digit is illuminated for 1 ms every 4 ms (i.e. a digit is un-illuminated for 
3 ms and illuminated for 1 ms). This is taken care of by feeding the output 𝑧 of the ‘counter to 0.001s’ to the enable input 

of the FSM. This way, state transitions only occur each 0.001 s. 
 Nexys-4/Nexys-4 DDR Board: For each display, we control the individual cathodes (7) of each LED: these active-low signals. 

The anode is common: his is the enable signal (active-low). The board has eight 7-segment displays; we are only using four 

displays in this circuit: thus, we need to control 4 enable signals and disable the remaining 4 (buf(7..4) = 0). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Algorithmic State Machine (ASM) chart: This is a Moore-type FSM. The output 𝑠 only depends on the present state. 

Note that this is actually a counter from 0 to 3 with enable. 
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BIT-COUNTING CIRCUIT 
 
SEQUENTIAL ALGORITHM 
  
 
 
 
 
 
 
 
 
DIGITAL SYSTEM (FSM + Datapath circuit) 
 Counter Design: EC=1 increases the count. sclr: Synchronous clear. The way this is designed, if sclr = ‘1’, the  count is 

initialized to zero (here, we do not need EC to be 1). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Algorithmic State Machine  (ASM) chart: Mealy FSM 
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DEBOUNCING CIRCUIT 
 Mechanical bouncing lasts approximately 20 ms. The, we have to make sure that the input signal 𝑤 is stable (‘1’) for at least 

20 ms before we assert 𝑤_𝑑𝑏. Then, to deassert 𝑤_𝑑𝑏, we have to make that the 𝑤 is stable (‘0’) for at least 20 ms. 

 
DIGITAL SYSTEM (FSM + Datapath circuit) 
 Counter 0 to N-1: E=1  Q = Q+1. sclr: Synchronous clear. The way it is designed, if sclr = ‘1’ and E=’1’, then Q=0. 

If T is the period of the clock signal, then 𝑁 =
20𝑚𝑠

𝑇
. 

For example, for 100 MHz input clock, T = 10 ns. Then 𝑁 =
20𝑚𝑠

10𝑛𝑠
= 2 × 106 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Algorithmic State Machine: 
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SIMPLE PROCESSOR 
 
DIGITAL SYSTEM (FSM + Datapath circuit) 
 This system is a basic Central Processing Unit (CPU). For completeness, a memory would need to be included. 
 Here, the Control Circuit could be implemented as a State Machine. However, in order to simplify the State Machine design, 

the Control Circuit is partitioned into a datapath circuit and a FSM. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OPERATION 
 Every time w = '1', we grab the instruction from 𝑓𝑢𝑛 and execute it. 
 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = |𝑓2|𝑓1|𝑓0|𝑅𝑦1|𝑅𝑦0|𝑅𝑥1|𝑅𝑥0|. This is called ‘machine language instruction’ or Assembly instruction: 

 𝑓2𝑓1𝑓0: Opcode (operation code). This is the portion that specifies the operation to be performed.  

 𝑅𝑥: Register where the result of the operation is stored (we also read data from 𝑅𝑥). 𝑅𝑥 can be R1, R2, R3, R4. 
 𝑅𝑦: Register where we only read data from. 𝑅𝑦 can be R1, R2, R3, R4. 

 
f = f2f1f0 Operation Function 

000 Load Rx, Data Rx  Data 

001 Move Rx, Ry Rx  Ry 

010 Add Rx, Ry Rx  Rx + Ry 

011 Sub Rx, Ry Rx  Rx - Ry 

100 Not Rx Rx  NOT (Rx) 

101 And Rx, Ry Rx  Rx AND Ry 

110 Or Rx, Ry Rx  Rx OR Ry 

111 Xor Rx, Ry Rx  Rx XOR Ry 
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 Control Circuit:  
This is made out of some combinational units, a register, and a FSM: 

 Ex: Every time we want to enable register 𝑅𝑥, the FSM only asserts Ex (instead of controlling E_R0, E_R1, E_R2, E_R3 

directly). The decoder takes care of generating the enable signal for the corresponding register 𝑅𝑥. 

 Eo, so: Every time we want to read from register 𝑅𝑦 (or 𝑅𝑥), the FSM only asserts Eo (instead of controlling O_R0, 

O_R1, O_R2, O_R3 directly) and so (which signals whether to read from 𝑅𝑥 or 𝑅𝑦). The decoder takes care of generating 

the enable signal for the corresponding register 𝑅𝑥 or 𝑅𝑦. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 Arithmetic-Logic Unit (ALU): 
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 Algorithmic State Machine (ASM): 
Every branch of the FSM implements an Assembly instruction. 
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